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CHAPTER I. GENERAL INTRODUCTION 

Dissertation Organization 

This dissertation is a compilation of three papers submitted to or published in 

scholarly geotechnical engineering and civil engineering materials journals. The first paper 

describes an evaluation of the long-term performance of roadbase materials constructed from 

waste by-products including hydrated fly ash (HFA) with cement kiln dust (CKD) and 

atmospheric fluidized bed combustion (AFBC) residue used as calcium activators. Field 

construction processes, material cost estimates and comparisons, and strength and volumetric 

stability data are analyzed. The second paper describes a newly invented composite material 

from high-lime (ASTM Class C) fly ash and recycled polyethylene terephthalate (PET) 

plastic. Development of this value added composite material resulted in Iowa State 

Universit}' filing for a U.S. patent in 1999. The third paper presents a new-ly developed soil 

classification system for use in construction of cohesive earth embankments for highway 

construction. The described system is under review by the Iowa Department of 

Transportation for adoption and inclusion in statewide design and construction specifications. 

Each paper includes references to literature reviewed, research data and significant 

findings and conclusions with suggestions for fiiture research, and acknowledgements 

identifying the funding agency sponsoring the research. In the following, a general 

introduction is presented for the purpose of describing the research problem and significance 

of each paper. Following the main body of the dissertation is a general conclusion that 
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summarizes significant research findings fi-om each paper and provides additional 

recommendations for fiiture research. 

Long Term Strength and Durability of Hydrated Fly Ash Road Bases 

In order to significantly increase fly ash utilization and reduce long-term waste 

disposal problems, high volume, alternative applications need to be developed. One of the 

most promising of these applications is the use of reclaimed hydrated fly ash (HFA) as a 

replacement for aggregate in road bases. Reclaimed HFA in Iowa is produced at sluice pond 

disposal sites for generating stations burning low sulfur, sub-bituminous coal. The 

production of HFA is initiated by dumping and dozing raw fly ash into the sluice pond where 

it hydrates to form a working surface platform. The HFA is then constructed on top of the 

platform in thin layers of raw ash that are spread, watered, compacted and allowed to hydrate 

before the next layer is placed. After cementitious and pozzolanic reactions have hardened 

the HF.A.. it is typically mined by using conventional recycling-reclaiming equipment to 

pulverize and reclaim the material where it is stockpiled on-site for use as an artificial 

aggregate or structural fill material. When re-moistened and compacted for use as a base 

material, pozzolanic reactions resulting from unreacted calcium, silica and alumina in the 

glassy phase of the HFA material contribute to strength gain as a function of time. 

This research paper presents the laboratory testing results, design, field construction, 

and long-term (5 years) performance of a field demonstration project where road base 

materials were constructed from reclaimed HFA with atmospheric fluidized bed combustion 

(AFBC) and cement kiln dust (CKD) used as calcium activators. The use of AFBC and CKD 
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as activators is of interest because these materials are also by-products and must otherwise be 

landfilled as waste. The physical and chemical properties of these materials in their raw and 

hydrated form were studied. In addition, the compaction characteristics, crushing strength, 

freeze-thaw susceptibility, and volumetric stability were evaluated. Strength testing and 

chemical analysis indicate that AFBC and CKD activators increase cementitious and 

pozzolanic reactions in the HFA material. Field results of long-term strength gain from core 

samples show significant strength increase in the CKD stabilized HFA base mi.xture. while 

the AFBC stabilized HFA mi.xture shows signs of freeze-thaw durability problems as 

opposed to satisfactorj' laboratory performance under ASTM C593 testing, or volumetric 

stability' problems. It appears that the AFBC section is performing well but is probably 

functioning as a flexible aggregate base rather than a stabilized and cemented semi-rigid 

base. The strength properties and environmental benefits of using reclaimed HFA make it a 

desirable road base material from an engineering, envirorunental. and economical 

perspective. 

.Microstructure of Composite Material from High-Lime Fly Ash and RPET 

This technology feasibility study was aimed at converting fly ash and polyethylene 

terephthalate (PET) wastes into a useful value added composite building material. 

Objectives of this study were to determine the optimum combination and quantities of fly ash 

and PET based on favorable mechanical properties and to determine the process parameters 

for the production of the composite material. In the composite material the fly ash acts as the 

filler material and the PET plastic acts as the binding material. The fly ash. which is a waste 
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by-product produced in coal-fired power plants, is available in large quantities. Further. PET 

is not an environmentally biodegradable material that must be land filled as waste. Thus, 

recycling has emerged as a practical method to deal with the problem of fly ash and PET 

plastic disposal. However, in order to achieve a higher reclamation level for fly ash and 

plastics, value added and secondary products must be developed. 

In an effort to develop a new value added product, tests on composite material from 

high-lime (ASTM class C) fly ash and recycled PET were conducted. First, composite test 

specimens of fly ash and PET were heated, mixed, and molded to investigate the mechanical 

properties and microstructure features. Microstructural features associated with crack 

propagation during compression loading and the PET binding mechanisms were studied 

using scanning electron and polarized reflective light microscopy and differential scanning 

calorimetry. The results of this investigation showed that the fly ash concentration 

contributed significantly to both the strength of composite material and the cr> stallinity of 

the PET binder. Second, composite specimens with varx'ing fly ash concentrations were 

tested in compression and tension, immersed in water to measure water absorption, and 

observ ed for shrinkage during manufacturing. The composite material is shown to have high 

compressive strength (4 to 5 times higher than Portland cement concrete), low density, and 

low water absorption. Furthermore, it can be molded to form various shapes and contains 

cementitious properties at fractured surfaces from exposed fly ash particles. 

Primarv' uses for this material are anticipated to be construction pcmels. masonr\ units 

and lightweight polymer aggregate for concrete. Plastic recyclers that make alternative 

products for fencing and masonry and manufacturers who use lightweight aggregates in their 

products would be interested in this material. Based on the evidence, it is concluded that the 
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composite material is a value-added material with a variety of potential construction 

applications. 

Simplified and Rapid Soil Performance Classification System 

Considering the complex engineering properties of soils and several unique property 

correlations, the Empirical Performance Classification (EPC) system was developed to 

improve overall soil design and facilitate field identification during highway embankment 

construction. This system of classifying cohesive soils for earth embankments is based on 

determination of the fraction finer than the No. 40 (425-|im) and No. 200 (75-|im) sieves, 

liquid limit, and plasticity index. The EPC system identifies three major soil performance 

groups: (I) select. (2) suitable, and (3) unsuitable. Select treatment materials are those 

placed directly under the pavement structure to provide adequate volumetric stability, low-

frost potential, and adequate bearing capacit)'. Suitable soils underlay the select treatment 

materials and are usually susceptible to seasonal changes such as wetting and drv'ing cycles. 

Unsuitable materials are commonly characterized as highly plastic clays or highly 

compressible frost prone silt and are usually buried beneath the suitable soils. The unsuitable 

soils are fiirther characterized for disposal by one of three methods: (I) slope dressing only. 

(2) 1.0 m below top of subgrade. or (3) 1.5 m below top of subgrade. 

Development of the EPC system is based on empirical relationships for swell 

potential and frost susceptibility derived from the literature. Also, the new AASHTO group 

index empirical formula is used as a means of averaging the effects of plasticity index, liquid 
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limits, and percent passing the No. 200 sieve. A description of the critical engineering 

properties and values used to develop the system are described. 

Classification of soils with the EPC system is ultimately intended to increase field 

soil identification, better link design with construction, and reduce long-term pavement 

maintenance costs. Recently, this classification method was used in Iowa on a highway pilot 

project to test feasibility. Research shows that the EPC system is an effective tool to use 

when soils are being mi.xed in the borrow excavation or are not identified during the initial 

site investigation. 
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CHAPTER II. LONG TERM STRENGTH AND DURABILITY OF 
HYDRATED FLY ASH ROAD BASES 

A paper submitted to the Transportation Research Record 

David J. White' and Kermeth L. Bergeson' 

ABSTRACT 

This paper presents long-term performance monitoring of a demonstration project 

where road base materials were constructed from reclaimed hydrated fly ash (HFA) with 

atmospheric fluidized bed combustion (AFBC) and cement kiln dust (CKD) by-products 

used as calcium activators. Reclaimed HFA is a form of artificial aggregate produced from 

compacted, hydrated Class C fly ash at pulverized coal combustion facilities. Strength 

testing and chemical analysis indicate that AFBC and CKD activators increase cementitious 

and pozzolanic reactions in the HFA material. Laboratory analysis determined the preferable 

range of activator to HFA artificial aggregate ratios for AFBC and CKD activated mi.xtures 

based on strength development and freeze/thaw durability analysis, as well as compaction 

characteristics and optimum moisture content ranges. Results of long-term strength gain 

from core samples show significant strength increase in the CKD stabilized HFA base 

mi.xture. while the AFBC stabilized HFA mixture shows signs of freeze-thaw durability 

problems as opposed to satisfactory laboratory performance under ASTM C593 testing, or 

volumetric stability problems. It appears that the AFBC section is still performing well but is 

probably functioning as a flexible Macadam base rather than a stabilized and cemented semi-

' Pre-Doctoral Research Associate and Professor, respectively. Department of Civil and 
Construction Engineering. Iowa State University 
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rigid base. Long term testing indicates that the high-voiume alternative use of these by­

products is an economical and suitable application when used with a suitable calcium 

activator. 

INTRODUCTION 

0\ er 40 percent of the electricity produced in the United States is from burning 

approximately 700 million metric tons of coal annually (/). TTiis results in a significant 

disposal problem of 90 million metric tons of coal combustion by-products of which 

approximately 58% is fly ash (2). At the present time it is estimated that 25 percent of fly 

ash ;s effectively diverted from the waste stream and used as a material resource (2.3). The 

greatest volumes of fly ash are used in engineering applications such as concrete products, 

roadbase materials, and structural fills (4). Other uses for fly ash include mine reclamation, 

waste stabilization and filler in paint, plastic and metal. While these are e.xcellent 

applications of fiy ash utilization, they typically are low volume uses. For example, fly ash 

as a mineral admixture in Portland cement concrete only replaces from 10 to 20 percent by 

w eight of cement. In order to significantly increase fly ash utilization and reduce disposal 

problems, higher volume applications need to be developed. One of the most promising of 

these applications is the use of reclaimed hydrated fly ash (HFA) as a replacement for 

aggregate in road bases. 

Reclaimed HFA in Iowa is produced at sluice pond disposal sites from generating 

stations burning low sulfur, sub-bituminous coal. Production of HFA is initiated by 

dumping and dozing raw fly ash into a sluice pond where it hydrates to form a working 

surface platform. The HFA is then constructed on top of the platform in thin layers of raw 
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ash that are spread, watered, compacted and allowed to hydrate before the next layer is 

placed. 

The self-cementing property of Class C fly ash occurs from the initial rapid hydration 

of tricalcium aluminates and other compounds, which form cementitious reaction products, 

followed by slower pozzolanic reactions. After initial cementitious reactions have hardened 

the HFA. it is t\pically mined by using conventional recycling-reclaiming equipment to 

pulverize and reclaim the material where it is stockpiled on-site. When re-moistened and 

compacted, long-term pozzolanic reactions resulting from unreacted calcium, silica and 

alumina in the HFA material result in significant strength gain as a function of time. With 

the addition of a calcium activator to the reclaimed HFA. strength development can be 

significantly enhanced. 

The objective of this paper is to present the laboratory' testing results, design, field 

construction, and long-term (5 years) performance of a field demonstration project where 

road base materials were constructed from reclaimed HFA with atmospheric fluidized bed 

combustion (AFBC) and cement kiln dust (CKD) used as calcium activators. The use of 

•A^FBC and CKD as activators is of interest because these materials are also by-products and 

must otherwise be land filled as waste. The physical and chemical properties of these 

materials in their raw and hydrated form were studied. In addition, the compaction 

characteristics, crushing strength, freeze-thaw susceptibility, and volumetric stability were 

evaluated. 
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MATERIAL PROPERTIES 

Reclaimed Hydrated Fly Ash (HFA) 

Reclaimed HFA produced in Iowa is from Class C fly ashes that typically contain 20 

to 30 percent crystalline compounds including free calcium oxide and tricalcium aluminates. 

These cry stalline compounds are primarily responsible for the initial rapid hardening and 

early strength gain of HFA. The remaining 70 to 80 percent of the fly ash is composed of 

glassy phases (5). The glassy phase, rich in calcium, aluminum and silica, is believed to be a 

reactive glass (i.e. chemically dissolves more rapidly than silica rich glass) ((?). Long term 

strength gain of reclaimed HFA is believed the result of pozzolanic reactions from the slow 

dissolution of the calcium, aluminum and silica in the glassy phase, which are still present in 

the reclaimed HFA after initial hardening. 

The reclaimed HFA evaluated in this study was produced at the Ottumwa Generating 

Station (OGS) in Ottumwa. Iowa. Analytical chemical composition of this material is shown 

in Table 1. Figure 1 shows the particle size distribution, indicating that the HF.A. produced 

was reasonably well graded with about 20 percent fines content (7). 

Cement Kiln Dust (CKD) 

Cement kiln dust (CKD) is a by-product of Portland cement production. It is 

generated from the process of removing alkalis, chlorides, and sulfates from cement kiln 

e x h a u s t  g a s s e s  a n d  i s  c o l l e c t e d  b y  e i t h e r  a  b a g  h o u s e  o r  e l e c t r o s t a t i c  p r e c i p i t a t o r  ( 8 ) .  

Typically. CKD is a fine material with a mass median particle diameter of approximately 10 

fim (9). The CKD used in this investigation was obtained from the Lafarge cement plant in 

Buffalo. Iowa. Similar to Class C fly ash, CKD when hydrated will form cementitious 
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reaction products. In contrast, CKD t>pically has a much higher afrinit>' for water than fly 

ash requiring up to 50% water before becoming slurry (9). 

Atmospheric Fluidized Bed Combustion (AFBC) Residue 

In recent years one of the clean coal technologies that has been developed to meet 

stricter sulfate emission standards is the production of atmospheric fluidized bed combustion 

(AFBC) residue. AFBC residue is formed by burning pulverized coal mixed with a 

limestone sorbent in a fluidized bed at temperatures near 900°C {10). Chemical reactions 

between the sulfur in the coal and sorbent trap the sulfur while in the combustion chamber. 

v\ hich then becomes part of the solid by-product. Through this process the limestone is 

r e d u c e d  t o  c a l c i u m  o x i d e  a n d  b e c o m e s  p a r t  o f  t h e  p o z z o l a n i c  m a t e r i a l  i n  t h e  b y - p r o d u c t  { I I ) .  

Consequently, two to four times more solid waste is generated than in standard pulverized 

coal - f i red  p lants  {8) .  

Table 1 shows the chemical constituents of the CKD and AFBC residue. In 

comparison to the reclaimed HFA, the CKD contained approximately two times the calcium 

oxide content and four times the sulfate content. The calcium oxide content of the AFBC is 

similar to that of the reclaimed HFA but also has four times the sulfate content. It has been 

reported that the influence of high sulfate content in lime and fly ash stabilized soil can result 

in high initial strength, but may compromise durability by affecting the normal long-term 

pozzolanic reactions of the stabilizing process {12,13). Furthermore, the potential for 

d e v e l o p m e n t  o f  e x p a n s i v e  m i n e r a l s  s u c h  a s  e t t r i n g i t e  a n d  t h a u m a s i t e  i n c r e a s e s  { 1 3 , 1 4 ) .  
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LABOR,\TORY TESTING 

The following presents the results of materials testing and initial design of the 

reclaimed HFA base for the Ottumwa-Midland landfill access road. The landfill access road 

is 0.8 km long and supports local traffic and heavily loaded trucks transporting power plant 

by-products to the landfill disposal site. Moisture-density relationships, strength 

development and freeze-thaw durability (predicated from .ASTM C593) were the primary' 

criteria used in the design. 

Moisture-Density Relationships 

Moisture-density tests were conducted using standard Proctor energy and ASTM D 

698 test procedures. The moisture-density curves for the HFA with both CKD and ABFC 

activators are relatively flat (i.e. little change in density with increasing water content). 

Optimum moisture content was selected for each mi.xture based on the moisture-density data 

and compactibility of the mixes. Results are shown in Table 2. On average, optimum 

moisture content and maximum dr\' density for untreated HFA materials from Iowa are in the 

range of 26-36 percent at 12.4-14.6 kN/m^ (79-93 lb/ft"') maximum dry density (15). Specific 

gravity of the raw fly ash is about 2.7. while the HFA bulk specific gravity and the saturated 

surface dry (SSD) bulk specific gravity are typically 1.5 and 1.9. respectively. During the 

reclaiming process, it was observed that in-situ moisture content of the reclaimed HFA varied 

from 14 percent near the surface to 24 percent at 0.5 m. If enough water is available 

reclaimed HFA will quickly (< 15 minutes) absorb water to equilibrate at about 25 to 30 

percent moisture. 
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Strength Analysis 

Influence oj Calcium Activator 

Se% eral crushing strength samples consisting of CKD and AFBC activated HFA 

mixtures were prepared in standard Proctor molds at approximate optimum moisture content 

using standard compaction energy. Samples were then humid cured at 38°C (100°F) for 7 

days as per ASTM C593 requirements (16). For comparison, three sets of samples were 

tested under soaked and vacuum saturated test conditions for each treatment level. 

•According to Dempsey and Thompson (/ 7) vacuum saturation can be used as a rapid and 

accurate method for predicting freeze thaw durability of materials such as soil-cement, lime-

fly ash. and lime soil mixtures. Figure 2(a) shows results of strength testing for 10. 15. and 

20 percent CKD and AFBC activated HFA mixtures. ASTM C593 guidelines suggest a 

minimum strength of 2.8 MPa (400 lb/in") for field performance and freeze-thaw durability 

of nonplastic mixtures. Untreated the HFA achieved strengths of only 0.3 MPa (50 lb/in") 

(13). The CKD activated HFA exhibited strengths of about 6.9 MPa (1000 lb/in') at the 10 

and 15 percent addition levels; whereas, the AFBC activated HFA exhibited strengths of 

about 5.5 MPa (800 lb/in") at the 15 and 20 percent levels. For comparison, samples were 

also prepared and tested as per ASTM C593 procedures except they were cured for 28-days 

in 100 percent humidity conditions at 21°C (70°F) and are shown in Figure 2(b). 

Influence of .K'foisture Content 

To evaluate crushing strength development relative to compaction moisture content, 

samples were prepared using 15 percent CKD and AFBC activator levels and compacted 

both dr\' and wet of optimum moisture content. Test results, shown in Figure 3(a). indicate 
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that a significant strength reduction occurs for both CKD and AFBC activators when 

compaction moisture content is below optimum. 

Influence uf Compaction Energy 

To evaluate effects of compaction energy on strength and density. CKD samples were 

prepared on the dr>- and wet side of optimum using compaction energies ranging from 80 

percent standard Proctor to modified Proctor energy. AFBC samples were prepared at 

optimum moisture content using variable compaction energy only. Strength results are 

shown in Figure 3(b). At 15 percent CKD. samples prepared on the dry side of optimum 

exhibited dry densities of 13.5 kN/m^ (86 lb/ft"") at 80 percent standard Proctor energy. At 

modified energy. densit\- increased to 14.6 kN/m^ (93 lb/ft"'). The CKD samples prepared 

wet of optimum exhibited dr\' densities of about 13.4 kN/m^ (85 lb/ft"') at 80 percent standard 

and 14.3 kN/m" (91 lb/ft"') at modified energy. The crushing strength of the CKD activated 

HFA slightly increased as compaction energy increased. All AFBC samples exhibited dry-

densities of about 13.5 to 13.8 kN/m^ (86 to 88 Ib/ft^) at all compaction energy levels and 

exhibited similar strengths regardless of compaction energy. 

Influence of Curing Time 

AFBC and CKD activated reclaimed HFA mixtures were tested early in the research 

program for curing periods of up to one year under sealed and humid curing conditions. 

Results are shown in Figure 4. These tests verify that long-term strength gain takes place 

and that there is little difference between sealed versus humid cured conditions. It can be 

seen that the CKD mixture is approximately twice as strong as the AFBC activated HFA. 
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Through 336 days it is evident that strength curves for both the CKD and AFBC mixtures are 

trending upwards, thus indicating long-term pozzolanic activity is continuing. 

In summary, the laboratory data indicate that (1) CKD and AFBC calcium activators 

significantly increase initial strength development of the reclaimed HFA and show no signs 

of freeze-thaw durability problems from ASTM C593 testing, (2) field compaction should be 

conducted at or above optimum moisture. (3) additional compaction energ}' does little to 

increase density or strength, and (4) pozzolanic activity is evidenced by continued long term 

strength gain. 

HFA BASE AND PAVEMENT DESIGN 

Based on the laboratory analysis, the pavement section for the test road was designed 

to consist of 3.8 cm (1.5 inch) asphalt concrete surface course, a 28 cm (11 inch) stabilized 

reclaimed HFA base at 10 percent CKD or 15 percent AFBC activator levels and a 10 cm (4 

in) aggregate subbase for drainage. In addition, an asphalt cement prime coat was specified 

to act as a curing membrane and bonding agent over the HFA base. Comparative cost 

estimates of Portland cement concrete and asphaltic cement concrete pavement sections, 

which u ere calculated to provide equivalent structural capacity, are shown in Table 3. With 

an activated HFA base and thin asphaltic concrete surface, it was estimated that the pavement 

cost could be reduced by 45 to 50%. 

FIELD CONSTRUCTION 

The Ottumwa-Midland landfill access road was constructed from May 30 through 

June 1. 1995. In order to compare the performance of both CKD and AFBC as calcium 
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acti\ators. test sections consisting of a 550 m (1800 ft) section of 10 percent CKD activator 

and a 210 m (700 ft) section of 15 percent AFBC activator were constructed. 

The major steps involved with preparing the CKD and AFBC activated HFA mixtures 

were as follows: 

• HFA reclaimed at OGS sluice pond disposal site 

• Activator belly dumped onto a predetermined area of hydrated HFA. spread by motor 

grader, mixed and reclaimed to depth of about 20 cm (8 in) with CAT RJ1250. 

• Material stockpiled at site 

Construction of the base was accomplished in one lift using the following equipment 

• CAT tractor and Jersey box spreader 

• Seeman's self-propelled pulvimixer 

• Tvvo water trucks 

• Fifty-ton Buffalo Springfield static pad foot roller for initial deep compaction 

• Pneumatic roller for surface compaction 

• Vibrator\' steel wheeled roller for finish compaction 

• Motor grader 

Field Testing 

Quality control moisture-density testing indicated that 95% compaction was achieved 

in the CKD treated section with moisture averaging 3 percent above optimum, whereas the 

AFBC section was compacted to 92% compaction at 7 percent above optimum. 
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Furthermore, several density tests indicated a 5 to 6 percent density variation between the 

surface and bottom of the base, with the bottom exhibiting lower density. Additional field 

compaction effort resulted in no increase in density. 

FIELD PERFORMANCE 

Since construction of the Ottumwa-Midland landfill access road, field performance 

evaluations have been conducted annually for a period of 5 years. Monitoring includes 

pa\ ement distress observations and mapping and core sampling for strength determination. 

Surface Distress Observations 

Both test sections have exhibited transverse and longitudinal thermal cracking of the 

surface course. These cracks appeared the first summer after construction and have remained 

tight on both sections over the 5 years observed. The only other pavement distress observed, 

as shown for the CKD section in Figure 5(a). is some edge cracking and slight raveling of 

the thin asphaltic concrete surface. This is more pronounced in the AFBC section where the 

surface course was on the order of 25 mm (1 in) thick as shown in Figure 5(b). This is 

believed to be due. primarily, to lack of edge and shoulder support of the HFA base. No 

other evidence of distress has been observed and both test roads are performing well for the 

intended use under heavy traffic. 

Evaluation of Core Strength 

Nominal 10.2 cm (4 inch) diameter cores extracted in August 1995 (2 months after 

construction) show compressive strength averaging 5.7 MPa (830 lb/in") for the CKD 
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section, and 4.1 MPa (590 lb/in") for the AFBC section. On average a 30 percent strength 

difference was noted in cores extracted from the CKD section from top to bottom of the base 

layer with the top being stronger. Annual coring has showTi an increase in the strength of the 

CKD activated base. The range in core strength and combined average results of the top and 

bottom cores, shown in Figure 6. indicate significant strength increase in the first 2 years up 

to 15.4 MPa (2230 lb/in'). Strength appears to be slightl}' decreasing over the last 3 years. 

Figure 7 shows the HFA aggregate and orientation from a core slice of the CKD activated 

HFA and a core section extracted in June 2000. 

In contrast to the CKD test section, the AFBC activated HFA has not shown long-

term strength gain. Table 4 summarizes limited core strength data from the first 2 years after 

construction. Cores extracted the first year were above the 2.8 MPa (400 lb/in") requirement 

suggested by ASTM C593 for freeze-thavv durabilit>". which agreed with previous laborator>' 

lest results. However, the fact that only 1 out of 6 cores were recovered over the ne.xt 2 years 

suggested that HF.A base deterioration was occurring. Recent observation of material 

remo\ed from a 150 mm core hole indicates that the AFBC activated HFA is severely 

delaminating parallel to the pavement surface in thin angular shaped lenses (50 to 100 mm in 

rough diameter by 5 to 10 mm thick). The delamination appears to be occurring through the 

cemented matrix and not through the HFA aggregate particles. It was not known if this is a 

freeze-thaw durability problem (not evidenced by the ASTM C593 test method) or a 

\ olumetric stability problem due to delayed expansive, reaction product formation. 
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DURABILITY INVESTIGATION 

Following field observations of delamination occurring in the AFBC section, 

laboratory" testing was conducted to evaluate volumetric stability and freeze-thavv durability. 

First, long-term volumetric stability was analyzed in the laboratory by measuring volume 

change in test specimens cured at room temperature in different moisture conditions. Three 

samples of each mixture (10% CKD and 15% AFBC) were cured at room temperature in air. 

100% relative humidity, and submerged in water. Results indicated that very little volume 

change occurred in the AFBC or CKD stabilized HFA (less than 0.5% through 1 year). 

.A.gain if significant expansive reactions were occurring it was not evidenced over the l-year 

testing period under the described curing environments. 

A rigorous freeze-thavv test was then developed to evaluate durability and to check 

the validity of ASTM C593 tests for predicting the freeze-thavv durability of CKJD and AFBC 

activated HFA. Seven samples of AFBC and CK.D activated reclaimed HFA mixtures were 

prepared at optimum moisture content. Samples were then cured in 100 percent humidity for 

seven days. After the curing period the samples were unwrapped, weighed, resealed in 

plastic bags and placed in a freezer at -17.8°C (0°F) for three days. After the three-day 

freezing period, the samples were removed from the freezer and submerged in a water bath at 

room temperature for four days to thaw. At the end of the four-day thawing period the 

samples were weighed and placed back into the freezer for another cycle. Results of mass 

loss per freeze-thavv cycle are shown in Figure 8. It can be seen that the 10% CKD activated 

reclaimed HFA survived 59 freeze-thaw cycles losing on average 18 percent mass. In sharp 

contrast, the 15% AFBC samples survived only 9 cycles losing 50 % mass. This finding 
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suggests that ASTM C 593 is not adequate for predicting freeze-thaw durability of these 

materials. 

Important components of durability analysis for stabilized materials that possess long-

term pozzolanic activity (in the presence of sulfates) are curing time and environment 

(available water for hydration, water quality, temperature). It is known that the primar\' 

cementitious reaction product present in HFA is ettringite (15). If sulfates are available to 

the cementitious matrix in the proper temperature environment, ettringite can transform to 

thaumasite. which is a highly hydrous and expansive mineral (/-/). However, thaumasite 

only forms from ettringite at temperatures below 15°C. Therefore, it is speculated that 

ettringite may have first formed in the AFBC activated HFA and slowly converted to 

thaumasite during winter freeze thaw cycles. Thus, initial volumetric studies conducted at 

room temperature (24°C) did not provide a favorable temperature environment for the 

con\ ersion. Nevertheless, it cannot be stated with certainty whether or not delamination 

observed in the AFBC test section was initiated by freeze-thaw action or expansive reaction 

product formation. Additional experiments involving x-ray and thermal analysis are 

underway to better understand the long-term durability of CKD and AFBC activated HFA 

and untreated HFA. 

CONCLUSIONS 

The principal conclusions of the laboratory and long-term field performance study 

described in this paper are as follows: 
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• The use of HFA appears to be an economical and suitable alternative to conventional 

road base materials. Pavement material costs can be significantly reduced by 45 to 50 

percent. 

• By-products containing high levels of sulfates may not be appropriate as a calcium 

activator for long-term durability. 

• HFA material is unique in that if water is available for hydration long-term 

pozzolanic reactions increase strength with time, unlike conventional granular base 

materials. Long-term strength gain was evidenced in the laborator>' and from 

extracted core samples. 

• ASTM C593 freeze-thaw durabilit\- testing does not appear to be applicable to AFBC 

and CK.D activated HFA because long term pozzolanic activity and potentially 

expansi\ e reaction product formation is not a variable in the test method. 

• Despite the delamination occurring in the AFBC activated HFA test section, it has 

been performing very well under heavy traffic loads through 5 years. The only 

pavement distress observed is some edge cracking and raveling of the thin asphaltic 

concrete surface on both the CKD and AFBC activated HFA test sections, which is 

believed to be due to inadequate edge and shoulder support. 
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TABLE 1 Chemical constituents and physical properties 

Chemical Composition Base Materials (mass %) 

HFA CKD AFBC 

Silicon dioxide (SiOi) 31.0 15.5 23.8 

Aluminum oxide (AI2O3) 16.9 3.8 9.7 

Ferric oxide (FeiO:,) 5.6 1.9 7.0 

Sulfur trioxide (SO3) 3.6 14.4 15.7 

Calcium oxide (CaO) 25.9 52.3 28.4 

Magnesium oxide (MgO) 5.7 J.J 8.5 

Phosphorous pentoxide (P2O5) 1.0 0.1 0.3 

Potassium oxide (KiO) 0.3 4.4 1.0 

Sodium oxide (Na^O) 3.2 0.6 0.6 

Titanium oxide (TiO;) 1.3 0.2 0.6 

Strontium oxide (SrO) 0.40 0.04 0.06 

Barium oxide (BaO) 0.74 <0.02 0.09 

LOl (Loss on Ignition) 950°C 4.59 1.71% 6.03 

Physical Properties 

Specific Gravity' — 2.88 2.78 

Fineness (> #325 sieve. %) — 37.6 45.7 

pH — 12.57 12.65 
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TABLE 2 Optimum moisture content for various mixtures of 
HFA and calcium activator 

Activator Activator 
Content 

Optimum 
Moisture 
Content (%) 

Ma.\imum Dr\' 
Density 
kN/m'" 

10 27 14.14 

CKD 15 27 14.29 

20 28 14.45 

10 27 14.29 

AFBC 15 28 14.29 

20 29 14.29 

TABLE 3 Comparative pavement cost estimates for 0.80 km 
(0.5 mile) 

Pavement Section" Estimated Cost 

191 mm (7.5 in) PCC 
pavement (C-4 Iowa DOT 
concrete mixture) 

Full-depth ACC pavement 
consisting of 216 mm (8.5 in) 
of black base and 51 mm (2 
in) of surface course 

Activated HFA base 279 mm 
(11 in) thick with 38 mm (1.5 
in) hot-mi.\ asphalt cap 

SI 45.000 

$143,000 

$76,000 

" All pavement section estimated to provide equivalent structural numbers 
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TABLE 4 Core strength data from AFBC activated HFA section 

Sample*^ Strength Range 
MPa 

Standard 
Deviation 

MPa 

Number 
of 

Samples 

Average Strength 
MPa (lb/in") 

August 1995 2.21-6.41 1.9 5" 4.1 

May 1996 — — 1" 8.96 

^ Out of 4 core samples only one had sufficient recovery to get a top and bottom test 

Four cores were attempted only 1 could be extracted 

" In 1997 two cores were attempted with no recover^' 
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FIGURE 1 Particle size distribution of reclaimed HFA 
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FIGURE 2 (a) ASTM C593 strength development (b) 28-day 
humid cured strength 
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(a) 

(b) 

FIGURE 5 (a) Observed pavement condition in CKO activated HFA test section at 5 
years of service and (b) edge cracidng and raveling in a few locations of the AFBC 
activated HFA test section 
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FIGURE 6 Long term CKD activated HFA strength from extracted field cores 
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(b) 

FIGURE 7 Demonstration project (a) 10% CKD stabilized core sample showing HFA 
aggregate and cementitious matrix (b) core hole showing pavement section 
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CHAPTER HI. MICROSTRUCTURE OF COMPOSITE MATERIAL 
FROM HIGH-LIME FLY ASH AND RPET 

A paper published in the Journal of Materials in Civil Engineering' 

David J. White" 

ABSTRACT 

Tests on composite material from high-lime (ASTM class C) fly ash and recycled 

polyethylene terephthalate (RPET) were conducted to investigate the physio-mechanical 

properties and microstructure features. Composite specimens with varying fly ash 

concentrations were tested in compression and tension, immersed in water to measure water 

absorption, and observed for shrinkage during manufacturing. Theoretical equations from 

modulus of elasticity and tensile strength were derived vvith values compared to Portland 

cement concrete. Microstructural features associated with crack propagation during 

compression loading and the RPET binding mechanism were studied utilizing scanning 

electron and polarized reflective light microscopy and differential scanning calorimetr\'. The 

results of this investigation showed that the fly ash concentration contributed significantly to 

both the strength of composite material and the crystallinity of the RPET binder. Based on 

the e\ idence. it was concluded that the composite material is a value-added material with a 

\ ariety of potential construction applications. 

' Reprinted with permission of Journal of Materials in Civil Engineering, 2000. 12(1). 60-65 

" Pre-Doctoral Research Associate, Department of Civil and Construction Engineering. Iowa 
State University 
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INTRODUCTION 

Recognizing the environmental benefits, the production and use of waste materials 

such as fly ash and plastics has been strongly favored by environmental agencies. With this 

incentive an alternative composite material from high-lime cementitious fly ash and recycled 

post-consumer polyethylene terephthalate (RPET) has been developed. 

High-lime fly ash, selected as filler, is a by-product of coal combustion in electric-

generating stations that bum subbituminous coal. Millions of tons of fly ash are generated in 

the United States each year. Currently, the greatest volumes of cementitious fly ash are used 

in engineering applications such as concrete products, roadbase materials, and structural fill 

materials (U.S. Dept. of Trans. 1995). The remaining unused fly ash is usually pumped to 

sluice ponds or transported to landfills as waste, constituting long-term waste management 

problems. 

Waste PET plastic is neither environmentally biodegradable nor compostable. which 

creates disposal problems. Recycling has emerged as the most practical method to deal with 

this problem, especially with products such as PET beverage bottles, where the recycling 

process is fairly straightforward. Currently, a large waste stream is available for recycling 

applications. In the U.S.. estimates indicate that production of PET containers will reach 

1.8x10^ kg by the year 2000. which is a 55% increase from 1997 (Gabriele 1997). Along 

with increases in waste production, the incentive to develop recycling technologies and value 

added materials is amplified. In order to achieve a higher reclamation level for plastics, such 

as RPET. various secondary products must be developed (Chen and Shiah 1989). In terms of 

the processes of melting, mixing and homogenizing, recycled RPET from beverage bottles 
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has been found to be a favorable type of plastic to mix with high-lime fly ash and was 

selected as the binder component for the composite material. 

The objective of this paper is to improve the understanding of some mechanical 

properties and the strength gain mechanism of the composite material. Effects from 

compressive and tensile loading were evaluated along with density and water absorption. 

Polarized reflective light microscopy and differential scanning calorimetry (DSC) were 

utilized to analyze the PET crystalline content with variations in fly ash concentration. 

Scanning electron microscopy (SEM) was utilized to develop an understanding of the 

microstructure bonding and shear mechanism. 

MATERIALS AND METHODS 

Materials 

Fly ash is produced in electric-generating stations by burning finely ground coal at 

about 1500°C. The type of fly ash produced, typically characterized as high-lime or low-

lime. depends on the type of coal burned (Cohen 1995). For the composite material a high-

lime (.A.STM class C) fly ash was chosen as the filler material and was produced from 

combustion of low-sulfiir. subbituminous coal that originated from the Powder River Basin 

near Gillette. Wyoming (Bergeson et al 1988). Low carbon, high calcium content and self-

cementitious properties characterize this fly ash. The chemical analyses from x-ray 

fluorescence are given in Table 1 along with fineness and specific gravity. 

TN-pically. high-lime (ASTM class C) Iowa fly ash contains from 20 to 30 percent 

analviical lime. Physically, they contain more fine and less coarse particles than low-lime 

(ASTM class F) fly ash (Cohen 1995). Chemically, they usually are composed of 20 to 30 
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percent crvstalline compounds with the remainder being amorphous, glassy materials. The 

fly ash spheroid particles and particle size distribution are shown embedded in the composite 

material in Figure 1. After sampling the fly ash. the moisture content of the fly ash was 

maintained at less than 1%. reducing hydration and pozzolanic reactions prior to composite 

production. 

RPET. which is a thermoplastic polymer, can consist of either a completely 

amorphous structure or a partially crystalline structure. The crystalline portion of the RPET 

forms because thermoplastics have completely separated molecules that can cr\'stallize by 

rearrangement and ordering of the molecules (Miller 1996). Similar to ail crystalline solids, 

this creates an intemal repeating order of molecules or atoms. Upon heating. RPET and 

other thermoplastics polymers can melt, becoming sufficiently free flowing to permit mold 

filling (Miller 1996). In addition, these crystalline polymers have a sharp, identifiable 

melting point (MacDermott and Shenoy 1997). In the production of the composite material 

both amorphous and partially crystalline RPET containers were utilized. By observ.'ation the 

physical difference between the amorphous and cr>stalline RPET can be seen, since 

amorphous RPET is typically transparent and crystalline RPET is opaque. 

Transparent, opaque and green post-consumer RPET beverage bottles were utilized in 

the production of the composite material, which were acquired through a local collection 

effort. In order to prepare and process the RPET. the plastic was first rinsed in warm water 

to remove any residue. Next, the bottle caps, labels and adhesives were physically removed. 

Once washed and air-dried, the bottles were shredded to nominal square sizes of 0.5 to 6.0 

cm. This simple laboratory recycling and processing operation emulates commercial RPET 

recycling processes that typically consist of the following steps: (1) segregation of the 
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bottles. (2) air separation to remove metal and paper. (3) flotation to remove non-RPET 

flakes, and (4) final drying (Basta et al. 1997). Table 2 contains details of some typical 

mechanical properties of PET resin used in the production of beverage bottles. Virgin PET 

resin used in the production of beverage bottles has a crvstallinity that is normally about 25% 

(Ehrig 1992). 

Composite Material Production 

In order to manufacture the composite material and perform engineering property 

testing, proportions of dry fly ash and shredded RPET were heated, homogenized, and 

molded to form testing specimens. Heating was accomplished by placing the fly ash and 

shredded RPET in an open container over an electric burner. During heating the temperature 

was controlled between 255 and 265°C to induce melting of the RPET but not to exceed the 

decomposition temperature (approximately 270°C). While being heated the crystalline 

property of the RPET brought about an obvious transition temperature from solid to liquid. 

The composite material was homogenized by stirring the mixture. The smooth spherical 

shape of the glassy fly ash spheroids significantly contributed to the homogenization of the 

mixture. 

Since the mechanical properties of the polymer composite depend more strongly on 

the manufacturing process than those of other materials (Miller 1996). the influence of 

molding temperatures and cooling rates on the composite material were monitored. Once 

heated and homogenized, the mixtures were poured into a variet>' of preheated molds to form 

the specified geometry for testing purposes. Next, the composite material and molds cooled 
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synchronously at room temperature for approximately 2 hours. For testing purposes, some 

samples were cut or machined to form fiat parallel ends. 

Fly ash concentration in the composite specimens ranged from 0 to 70 percent by dry 

weight of the total mixture. Fly ash concentrations over 50% significzmtly increased the 

mixing time to obtain a homogeneous mixture, and mixtures over 70% were not possible 

with the described production methods. Upon cooling, the composite material had a hard, 

smooth texture, light brown color and was non-transparent. When crystallization occurs, it 

has been found that transmission of light through polymers is known to decrease (Fann et al 

1998). 

TEST METHODS 

Fly ash sampling and classification was conducted in accordance with ASTM C 311 

and ASTM C 618. Specific gravity was measured utilizing a helium pycnometer. 

Compressive strength of the composite material was determined according to ASTM D 695 

ai a loading rate of 5 mm/min. Split-cylinder tensile strength was performed as per ASTM C 

496-86 at a loading rate of 5 mm/min. A material testing system (MTS) was used to test 

stress-strain characteristics. Deformation readings were taken at a loading rate of 5 mm/min. 

Microstructural features were studied utilizing a Hitachi model S-2460N scanning electron 

microscope and an Olympus BHM polarized reflective light microscope with a Pixera Color 

CCD color system. Differential scanning calorimerty tests were performed with a model 

2960 TA Instrument DSC. The samples were heated at a rate of 15 °C/min in the 

temperature range of 50 to 325 °C. Immersing the samples into boiling water for 2 hours and 

measuring the change in mass was used to evaluate water absorption. 
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RESULTS AND DISCUSSION 

Effect of Composite Material Loading 

Cylindrical test specimens with a diameter of 26 mm and a height of 52 mm were 

manufactured for evaluation of compressive and tensile strength. The compressive strength 

results are shown on Figure 2. Compressive strength increased from approximately 77 to 

11 1 MPa with increasing fly ash contents from 0 to 65 percent, respectively. The strength 

gain may be attributed to the increasing crystalHnity in the RPET portion of the composite 

material as the fly ash content increases. During molding the fly ash is believed to act as a 

thermal insulator. This reduces the cooling rate and increases the crystalHnity of the RPET 

by allowing the RPET molecules to arrange themselves in an ordered pattern. As shown on 

Figure 3. images from a polarized reflective light microscope show that the crystallinity 

increases (indicated by bright colored grains) with increasing fly ash content. During 

compressive loading the fly ash particles and crystallinity of the RPET at interfaces inhibit 

crack propagation. In addition, solid, glassy fly ash spheroids increase the shear stress area 

between the interface of fly ash particles and the RPET binder. Figure 1 shows the fractured 

surface of the composite material and is evidence of strong bonding between the fly ash and 

RPET. For comparison, the illustration in Figure 4 depicts the hypothesized variation of 

RPET cr> stalline boundaries due to the fly ash and a predicted model of crack propagation. 

Due to the lack of complete fly ash particle coverage, beyond approximately 65 to 70 

percent fly ash content, the compressive strength decreased as shown on Figure 2. At high 

fly ash concentrations interfacial bonding could possibly be enhanced with increased mixing 

and homogenization. Results indicate that at 65% fly ash content the compressive strength is 

4 to 5 times higher than ordinary portland cement concrete. As previously reported by Li et 
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al. (1998). a composite material from post-consumer RPET and lovv-lime (ASTM class F) fly-

ash possessed compressive strengths 3 to 4 times that of ordinary portland cement concrete. 

The strength of the composite material in tension is an important property that greatly 

affects the extent and size of cracking at failure (Wang and Salmon 1992). Results of tensile 

strength tests are shown on Figure 5. Tensile strength varied from 3 to 7 MPa for fly ash 

contents of 0 to 70 percent with 50% being about optimum. The split-cylinder tensile 

strength fa has been found to be proportional to the compressive strength fc such that: 

fa =0.4 to  0 .1  yffc ( 1 )  

where f, and /V are in units of MPa. 

Over a fly ash concentration of about 50%. the tensile strength decreased. 

conceivably due to an increased area of fracture planes. Despite its plastic nature the 

composite tensile strength was highly variable and was about 4 to 6 percent of the 

compressive strength, which is comparable to concrete (Wang and Salmon 1992). 

Stress-Strain Properties 

Compressive strength stress-strain curves for composite specimens made with fly ash 

concentrations of 0. 37.5 and 70 percent are shown on Figure 6. From this data, it was 

observ ed that at 0% fly ash content, the remolded RPET was relatively ductile. Upon 

increasing the fly ash concentration, the stiffness increased and the composite material 

became more brittle. Therefore, given the same stress levels, increased fly ash content 

decreases the strain at failure. Elastic modulus values of the composite material ranged from 
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1185.7 MPa at 0% fly ash to 2252.3 MPa at 70% fly ash. which are on the order of 10 times 

less than that of ordinary Portland cement concrete. Such a finding is important if the 

composite material is considered for use in areas of energy and impact attenuation (Delwar et 

a! 1997). For fly ash concentrations Cfa between 0 and 60 percent the elastic modulus of the 

composite. Ec. data collected suggests: 

E. = 125 to l35 ( l  +  ̂ v7 :  (2 :  

where Ec and fc are expressed in units of MPa and Cf.^ expressed as percent drv' weight of 

the total mixture. 

Properties of Composite Material 

Values of average strength, elastic modulus, density, water absorption, and shrinkage 

are shown in Table 3. The density of the composite material varies from 1.28 to 2.03 g/cm" 

for fly ash content of 0 to 70 percent. Thermodynamic shrinkage during manufacturing 

decreased from 2.2% with no fly ash to 0.7% with a 70% fly ash concentration. Water 

absorption was ver\' low and variable from 0 to 0.9 percent. The fly ash particles, as shown 

on Figure 1. are actually coated with a thin layer of tightly bonded RPET preventing 

exposure to water. However, at fractured surfaces, sheared cenosphere and plerosphere fly 

ash particles and some solid, glassy fly ash spheroids were exposed and susceptible to water 

exposure. With this in mind the cementitious properties of the high lime-fly ash particles in 

the composite material could be taken advantage of by expanding the potential uses of the 

material. For example, if the composite material was utilized in-place of conventional 
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masonry- brick where it would be exposed to mortar, the bond between the mortar and fly ash 

particles in the composite material could increase the overall strength of the masonry system. 

Overall, the low density and high-lime fly ash makes it an alternative for a variety of 

construction materials such as light to medium weight concrete aggregate or lightweight 

construction panels. 

Composite Bonding Characteristics 

As previously reported it was observed that a composite material with ASTM class F 

fl\' ash and RPET could not be completely homogenized (Li et al 1998y. However, as shown 

on Figure I. it appears as though the high-lime (ASTM class C) fly ash particles are 

completely homogenized and coated with RPET. Figure 7 indicates a tightly bound 

plerosphere sheared in half along a fractured surface. To further investigate the ability of the 

composite material to physically bond and adhere to materials, ordinary concrete sand was 

mixed with the composite material. Figure 8. shows the tightly bound interface between a 

sand grain and the composite material along a fractured surface. The bonding strength of the 

composite material has been shown to exceed the shear strength of cenosphere and 

plerosphere fly ash particles, solid, glassy fly ash spheroids and common concrete sand 

grains. 

DSC Study in Heating and Cooling Mode 

To further study the crystalline behavior of the composite material and to provide 

insight into the effects of fly ash concentration on RPET crystallinity. DSC studies in the 

heating (endothermic) and cooling (exothermic) mode were performed. A sample of 
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remolded RPET with no fly ash and a 44.4% fly ash sample were cut from the surfaces of 

fractured specimens. The average sample weight was 7.2 mg. The thermograms are shown 

on Figure 9 and were used to calculate the peak melting temperature T„. peak cooling 

cr>'stallization temperature Tc. and the corresponding enthalpy changes AH. The results are 

displayed in Table 4. Note below approximately 1500°C the fly ash particles are inert and do 

not melt within the DSC test temperature range. 

The r^'s for remolded RPET with no fly ash and a composite mixture with 44.4% fly 

ash were 246.7°C and 250.4°C, receptively. The difference of 3.7°C is on account of the 

N'ariations in cr>'stallinit>' induced in the RPET by fly ash. As the crystalline structure 

becomes more ordered. Tm will increase (Fann et al. 1998). The remolded RPET with no fly 

ash consists of a lower amorphous fraction than the 44.4% composite mixture of RPET and 

fly ash. Therefore, due to its crystalline component and more orderly molecular structure 

(Fann et al. 1998). the Tn, of the composite material with increased fly ash content is higher 

than that of the composite material at low fly ash concentrations. 

The RPET exotherm associated with crystallization shifts to a lower temperature with 

increasing cooling rates (Fann et al. 1998). Peak cooling crystallization temperatures for the 

remolded RPET with no fly ash and 44.4% fly ash in the composite mixture were 205.4°C 

and 215.9°C. receptively. Thus, a relationship exists between the fly ash concentration in the 

composite material and the RPET peak cooling temperature of cr> stallization. The fly ash in 

the composite material manifests an increase in Tc by reducing the cooling rate during 

manufacturing. With this in mind the influences of fly ash and cooling rates during 

manufacturing could have a significant impact on material properties. According to Bergenn 
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el al. (1985). some advantages of higher crystallinity include greater resistance to organic 

solvents and dynamic fatigue. 

SUMMARY AND CONCLUSIONS 

The results of this research have shown that a value added composite material has 

been developed from high-lime (ASTM class C) fly ash and recycled RPET. In addition to 

environmental incentives for utilization of waste materials, favorable mechanical properties 

such as low density, minimal water absorption and high compressive strength create several 

potential uses for the composite material. The cementitious properties of the high-lime fly 

ash at fractured surfaces add diversity' to potential products and applications for the 

composite material such as masonr)' brick and concrete aggregate. 

It has been shown that fly ash plays a critical role in cooling rates and crystallinity of 

the RPET binder, which allows for an influence of mechanical properties through 

manufacturing. The crystallinity of RPET is an important mechanism that is directly related 

to the fracture mechanics of the composite material. Further, high-lime fly ash has been 

found to be economical as filler in the composite material reducing potential manufacturing 

costs. 

ACKNOWLEDGEMENTS 

The vsriter would like to thank the John H. Faber Scholarship Program administered 

by the American Coal Ash Association (ACAA) for providing the opportunit>' to research 

this topic. Special thanks are due to Dr. Kenneth L. Bergeson and Dr. Scott Schlorholtz for 

helpful discussions, suggestions, and valuable advice and for assistance through the Materia! 



www.manaraa.com

46 

Analysis and Research Laboratory (MARL) at Iowa State University. Also, thanks are due to 

the lovva Fly Ash Affiliates for materials and laboratory support. 

REFERENCES 

Basta. N.. Ondrey. G.. Rajagopal. R.. and Kamiya. T.. (1997). "Plastics recyclers scramble 

for scraps." Chemical Engineering 104(6). 43-119. 

Bergenn. W.. and Rigby. R. B.. (1985). "Tough engineering thermoplastics." Chemical 

Engineering Prog.. Jan. 36-38. 

Bergeson. K. L.. Schlorholtz, C.. Demirel, T.. (1988). "Development of a rational 

characterization method for Iowa fly ash." Iowa DOT Project HR-286, Engineering 

Research Institute Project 1847. Iowa State University. Ames. Iowa. 

Chen. 1.. and Shiah. C.. (1989). "Producing tough PET/HDPE blends from recycled beverage 

bottles." Plastics Engineering. 33-35. 

Cohen. M. D.. (1995). "Special cements and concretes." In: Chen. W. F. (Editor-in-chief). 

The Civil Engineering Handbook. CRC Press. New York. N.Y. 

Delwar. M.. Fahmy. M.. and Taha. R.. (1997). "Use of reclaimed asphalt pavements as an 

aggregate in Portland cement." ACI Materials Journal 94(3). 251-256. 

Ehrig. R.. (1992). Plastic recycling. Oxford University Press, New York. N.Y. 

Fann, M.. Huang. S. K... and Lee. J.. (1998). "DSC studies on the crystallization 

characteristics of poly(ethyIene terephthalate) for blow molding applications." 

Polymer Engineering and Science 38(2), 265-273. 

Gabriele. M. C.. (1997). "PET finds growing use in non-food containers." Modern Plastics. 

60-65. 



www.manaraa.com

47 

Li. Y.. White. D. J., and Peyton. L.. (1998). "Composite material from fly ash and post-

consumer PET." Resources. Conservation and Recycling. 24(2). 87-96. 

MacDermott. C. P.. and Shenoy. A. V.. (1997). Selecting Thermoplastics for Engineering 

Applications. Marcel Dekker. Inc.. New York. N.Y. 

Miller. E.. (1996). Introduction to Plastics and Composites. Marcel Dekker. Inc.. New York. 

N.Y. 

U.S. Department of Transportation (1995). "Fly ash facts for highway engineers." Rep. No. 

FHWA-SA-94-081. Federal Highway Administration. Washington. D.C. 

Wang. C.. Salmon. C. G.. (1992). Reinforced concrete design. Harper Collins Publishers. 

New York. 

NOTATION 

The following symbols are used in this paper. 

CV..( = percent concentration of dr>' fly ash by total mass 

= modulus of elasticity of composite material 

f\ = compressive strength of composite material 

f, = split-cylinder tensile strength 

r, = peak cooling crystallization temperature 

T„ = peak melting temperature 

AH = change in enthalpy 
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Table 1. Chemical constituents and physical properties of fly ash 

NO. Properties Value 
(1) (2) (3) 

A Chemical composition Weight percentage 

1 Silicon dioxide (SiO:) 30.0 
2 Aluminum oxide (ANO:,) 17.0 
3 Ferric oxide (Fe^Oj) 6.4 
4 Sulfur trioxide (SOj) 4.5 
5 Calcium oxide (CaO) 30.2 
6 Magnesium oxide (MgO) 7.3 
7 Phosphorous pentoxide (P2O5) 0.9 
8 Potassium oxide (KiO) 0.3 
9 Sodium oxide (Na^O) 1.5 
10 Titanium oxide (TiOi) 1.3 
11 Strontium o.xide (SrO) 0.4 
12 Barium oxide (BaO) 0.8 
13 LOI (Loss On Ignition) 0.5 

B Physical properties 

i Specific gravity 2.68 
-> Fineness" (> 10//) 1 1.5 % 

Note:" Data from Bergeson et al (1988). Values are averages 
based on four years of sampling. 
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Table 2. Physical and mechanical properties of PET resin 

No. Properties Value Test Method 
(1) (2) (3) (4) 

1 Tensile Strength 154 (MPa) ASTM D-638 

2 Flexural Strength 231 (MPa) ASTM D-790 

J Creep Modulus 6895 (MPa) ASTM D-638 

4 Elongation at Break 3 (%) — 

5 Specific Gravity 1.56 ASTM D-792 

6 Melting point 254 CO — 

7 Average shrinkage 4-6 (%) ASTM D-955 

Note: Data from MacDermott and Shenoy (1997) for virgin 
polyethylene terephthalate resin with 30% crystallinit\. 
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Table 3. Comparative properties of composite material 

No. 

l"ly ash 
content 
(weight 

percentage) 
Density 
(g/cnv') 

Average Itxperimcntal Results'" Modulus 

of 
elasticity 

(MPa) 

Water 

absorption 
2hr 

(% by wt) 
Shrinkage 

(%) No. 

l"ly ash 
content 
(weight 

percentage) 
Density 
(g/cnv') 

Compressive 
strength 
(MPa) 

Split-cylinder 
tensile 
(MPa) 

Modulus 

of 
elasticity 

(MPa) 

Water 

absorption 
2hr 

(% by wt) 
Shrinkage 

(%) 

1 0 1.28 77.4 3.6 1185.7 0.0 2.24 

2 9.1 1.32 80.7 3.7 1229.9 0.9 2.02 

3 16.7 1.38 81.3 4.0 (2) 0.6 1.88 

4 23.1 1.43 90.8 5.1 (2) 0.3 1.85 

5 28.6 1.48 90.9 3.9 (2) 0.3 1.80 

6 33.3 1.52 90.4 4.3 (2) 0.8 1.47 
7 37.5 1.57 89.1 5.0 1572.0 0.7 1.42 
8 41.2 1.61 101.3 7.1 (2) 0.5 1.44 
9 44.4 1.65 103.0 6,3 (2) 0.8 1.54 
10 50.0 1.72 101.7 6.2 2018.4 0.1 1.35 
11 54.6 1.79 107.2 6.6 (2) 0.4 1.54 

12 60.0 1.87 106.7 4.5 2248.8 0.5 1.25 
13 64.3 1.93 111.2 5.5 (2) 0.5 1.33 

14 68.8 2.01 100.5 (2) (2) 0.2 0.96 

15 70.0 2.03 (2) 5.6 2252.3 0.2 0.67 

(1) Based on two or three samples 
(2) Sample was not tested 
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Table 4. DSC transition temperatures and enthalpy changes of composite material 

Flv Ash 
No. content (%) T,, CO 7-c (°C) 
(1) (2) (3) (4) (5) (6) 

1 0 246.7 205.4 35.7 38.3 
2 44.4 250.4 215.9 27.4 28.8 

Figure 1. Composite material with high-lime fly ash spheroids embedded in RPET 
binder. 
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Figure 2. Variation of compressive strength as a function of fly ash content. 
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Figure 3. Polarized reflective light images at 60x indicating variation in RPET crystal 
content with fly ash content (a) 70% fly ash, (b) 20% fly ash. 
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Figure 4. Illustration predicting failure mechanisms of composite material (a) fly ash 
inhibits propagation of crack, and (b) crack propagation around fly ash spheroid at 
interface through crystalline RPET. 
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Figure 5. Variation of split-cylinder tensile strength as a function of fly ash content. 
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Figure 6. Effect of fly ash concentration on the stress/strain response of composite 
material. 
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Figure 7. Sheared surface of fly ash plerosphere embedded in composite RPET binder. 

Figure 8. Tightly bound interface of composite material at sheared surface of 
embedded sand grain. 



www.manaraa.com

58 

Remolded PET 0% fly ash 
•Composite material 44% fly ash 

50 100 150 200 250 

Temperature (C) 

300 350 

Figure 9. DSC thermograms of remolded RPET and composite material with 44.4% fly 
ash content. 
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CHAPTER IV. SIMPLIFIED AND RAPID SOIL PERFORMANCE 
CLASSIFICATION SYSTEM 

A paper to be submitted to the Geotechnical Testing Journal ASTM 

David J. White' and Kenneth L. Bergeson' 

Abstract: In response to recent evidence of poor highway embankment quality caused in 

part by improper soil identification and placement during construction, field-testing and 

laboratory' analysis were conducted to develop a simple and rapid performance-based soil 

classification system that can be conducted in the field. Development of the Empirical 

Performance Classification (EPC) system is based on swell potential and frost susceptibility 

relationships derived from liquid limit, plasticity index, and fines content (< 75 fim). From 

these parameters the EPC system is used to classify soils into one of three categories: select, 

suitable or unsuitable. This paper presents the background for the development of this system 

and procedures for its use. A field trial in Iowa indicates that Iowa Department of 

Transportation field personnel can effectively use the EPC system to classify soils in the field 

and to better link design with construction activities. Increased field soil classification is 

expected to improve long-term performance of cohesive earth embankments. 

Introduction 

Soil volumetric stability as a function of swell potential and frost susceptibility is a 

notable engineering property that significantly affects the long-term performance of subgrade 

' Pre-Doctoral Research Associate and Professor, respectively. Department of Civil and 
Construction Engineering, Iowa State University 
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soils and their capacity to support pavement structures. In the early 1900"s engineering soil 

classification systems evolved from the need to group soils with similar volumetric stability 

and strength properties together for highway and airport construction (Terzaghi 1926. 1927. 

Hogentogler et al. 1931, Hogentogler and Willis 1934. Casagrande 1932, 1948). In 1927 

Terzaghi reported that soil classification for engineering purposes should not be based solely 

on arbitrary' data such as liquid limit or plasticity index or even textural classification, but 

rather the final system of soil classification should be based on the complex behavior of soil 

"under various conditions of stress and confinement". It was proposed that the following 

information be collected: 

• Volume change produced by an external pressure (compressibility and elasticity) 

• Speed with which volume change follows a change of pressure (coefficient of 

consolidation). 

• Permeability 

• Volume change due to drying and wetting (shrink/swell potential). 

• Consistency in two extreme states (Atterberg limits). (Terzaghi 1927) 

By evaluating these soil parameters, a well-defined prediction of soil performance is 

dev eloped: however, testing equipment, cost and lengthy testing time limit the use of this 

process. In comparison with dam and levee construction, commercial building sites, and 

other sensitive projects, performing extensive laboratory analyses on the large quantities of 

soil used in highway embankment construction is not practical. As a result many highway 

agencies including the Iowa Department of Transportation (Iowa DOT) rely heavily on soil 
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classification methods based on soil plasticity in combination with grain-size distribution. 

soil density, pedologic information and soil origin in order to determine proper soil 

placement in the embankment. This process of soil classification has been shown to be 

relati\ ely effective in identifying "unsuitable" expansive soils and frost prone silts for design, 

but it does not facilitate field identification (Bergeson et al. 1998). The current Iowa DOT 

classification process is limited by time-consuming test methods such as hydrometer analysis 

that is only performed in a permanent soil laborator>' and requires a minimum of 24 to 48 

hours before results are available. In Iowa an embankment project will average roughly 

5.000-m^ of excavation and placement per day. Therefore, a rapid method of soil 

classification that can be conducted in the field is vitally needed. 

This paper presents an expedient and improved soil performance classification system 

for highway embankment construction termed the Empirical Performance Classification 

(EPC) system. The EPC system is intended for use by field personnel (i.e. inspectors and 

earthwork contractors). With this system soils classification can be conducted from the 

results of unsophisticated tests that can be rapidly performed in a field laboratory. A full-

scale field trial has shown that the EPC system is a very efficient and practical method of 

classifying embankment soils and that it facilitates proper soil placement and provides a link 

between the soil design phase and construction phase. 

The EPC system was derived from empirical relationships for liquid limit, plasticity 

index and fines content (percent passing the No. 200 sieve) that relate to soil swell potential 

and frost susceptibility. Furthermore, based on historical soils data collected in Iowa over the 

last 10 years, soil clay and silt fractions are shown to be strongly correlated to plasticity 
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index and fines content. Inherent in the usefulness of the EPC system is that soils with 

similar engineering properties are grouped together. 

Background 

Soil Identification 

An investigation of newly constructed highway embankments was recently conducted 

in Iowa as a result of slope stability problems and rough pavements being observed shortly 

after embankments were paved and opened to traffic (Bergeson et al. 1998. White et al. 

1999). These problems raised the question as to whether the current Iowa DOT soil 

identification and construction methods are adequate. Research began with an investigation 

of several embankments under construction. Initially, design engineers, field inspectors and 

earthwork contractors were interviewed to develop an understanding of the state-of-

knowledge concerning proper soil identification, engineering soil properties, and desired 

embankment quality. 

Foremost, it was observed that an understanding of soil identification procedures and 

proper placement within the embankment was lower than anticipated. Soils were being 

misidentified during construction in areas where the design borings were incomplete and 

when soils were mixed during the excavation, disking and compaction process. It became 

apparent that a link was missing between the design phase of the project (initial site borings) 

and the actual construction of the embankment. This problem was compounded by the fact 

that field personnel and contractors lack the equipment to perform soil classification testing 

in the field. However, even with the proper laboratory equipment, the current Iowa DOT soil 

classification procedures would require a lengthy and extensive laboratory analysis that lacks 
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efficiency. Table I summarizes the current Iowa classification procedure, which includes 

hydrometer analysis, carbon content determination, and Proctor density testing, as well as 

identification of soil origin (i.e. glacial till, residual) in order to classify a soil as "select", 

"suitable", or "unsuitable" for embankment construction. The disposal practices for 

unsuitable soils within the embankment are also presented. 

As a result of not having the equipment or an efficient methodology to classify' soils, 

field personnel rely heavily upon soil color, historical soil field names, and the observed 

soil's capacity to support heavy construction equipment. Based solely on appearance, 

predicting the physical performance and judging the suitability of soils is difficult. "Red-

dog". "Tiger". "Old-blue clay". "Gumbo", and "Sugar clay" are common field terms used to 

describe soils in Iowa and ultimately, to predict engineering performance. The names and 

properties of these field-described soils have been found to var\' between earthwork 

contractors and Iowa DOT personnel and from region to region across the state (White et al. 

1999). In situ testing on several completed embankment profiles supports the conclusion that 

soil identification based on the described historical soil names results in improper placement 

within the embankment, which leads to poor embankment quality. 

In Situ Embankment Profiles 

Figures 1 and 2 show full depth profiles of liquid limit, plasticity index, moisture 

content, and soil classification of recently completed embankments constructed under the 

current Iowa DOT soil classification specification. In addition, relative swell potential, 

calculated from an empirical relation reported by Weston (1980), is shown. Figure 1 

indicates that the embankment was constructed of mostly A-6 (CL) soils with some A-7-6 
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(CH) soils placed near the top of subgrade. Moisture contents ranged from 12.0 to 31.4 

percent, liquid limit from 31 to 58. and plasticity index from 15 to 41. Most of the 

embankment profile was constructed of soil classified as A-6 (CL). which is generally 

considered a "suitable" subgrade soil. However, in the top 0.3 m of subgrade the swell 

potential is about 3 to 4 times higher than that in the underlying soils. This "unsuitable" 

material was misidentified by both the earthwork contractor and the Iowa DOT field 

persormel and should have been disposed of at least 1.5 m below subgrade elevation 

according to the Iowa DOT specified disposal practices. Reportedly, the earthwork 

contractor and Iowa DOT considered the A-7-6 (CH) soil as "select" based on the 

obser\'ation that when compacted and dried the soil became very hard and made an excellent 

haul road. 

Figure 2 shows an embankmenl constructed at a different location with different Iowa 

DOT field persormel and contractor. The embankment profile consists of alternating layers 

of A-7-6 (CH) and A-4 (SC) with some A-2-4 (SM-SC) soils. For this embankment it 

appears as if the high swell potential soils (A-7-6) have been placed below the top of 

subgrade, but only to a depth of 0.5 m. At 0.5 m this "unsuitable" soil is within the zone of 

seasonal moisture change and lacks sufficient overburden confinement to maintain 

volumetric stability. Furthermore, the A-4 (SC) soils, which are tvpically rated as a moderate 

to high frost susceptible soil, should have been disposed of below the seasonal frost 

penetration depth to prevent heave and subsequent loss of bearing capacity during spring 

thaw. Neither of the described soils should have been used as "select" subgrade soil. These 

poor subgrade soils should have been altered by soil mixing, modified with fly ash or lime 

treatment, or replaced by hauling "select" from a different borrow pit. Misidentification or 
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lack of identification of expansive and frost prone soils is contributing to improper placement 

and will result in poor embankment performance. This will eventually lead to increased 

long-term pavement maintenance costs. 

Development of the EPC System 

The development of the EPC system was initiated by dividing soils into two groups: 

(1) clayey soils and (2) silty soils. Clayey soils represent those materials that have both swell 

potential and frost susceptibility. Silty soils represent those materials that are only frost 

susceptible. In the following sections, the degree to which a clayey soil or a silt>' soil has 

swell potential or is frost susceptible is predicted from empirical data correlations for Iowa 

soils. These empirical relationships form the basis for the development of the EPC system. 

Clayey Soils 

One of the most deleterious engineering properties of a soil that contributes to 

pa\ ement degradation is soil volume change. It is reported that damage costs from shrinking 

and swelling soils on buildings and pavement structures are greater than that produced by any 

other natural hazard including floods, hurricanes, tornadoes, and earthquakes (FCrohn and 

Slosson 1980). Furthermore, it is estimated that damage from expansive soils in the United 

States reaches $ 10 billion annually (Steinberg 1998). For highway embankment construction 

the best way to prevent costly pavement problems associated with expansive soils is through 

identification and proper disposal by selected placement within the embankment. 

According to Mitchell (1993), swelling and shrinking of clayey soils is a function of 

clay content and mineralogy, which are strongly correlated to plasticity index and liquid 
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limit. Table 2 summarizes several correlations between swell potential and plasticity index, 

liquid limit and clay content. In order to relate clay content to plasticity index for Iowa soils, 

historical soil data collected over a 10-year period was analyzed. Figure 3 shows an 

empirical correlation for plasticity index versus clay content for the full range of Iowa soils. 

Clay content is estimated as 

% Clay-size fraction (by weight < 2p.m) = 0.95(PI) + 6.75 (I) 

where PI = plasticity index. As shown a strong correlation (Adj. R" = 0.89. n = 12.045) 

exists between plasticity index and clay content. This supports earlier findings that the 

average distribution of clay minerals in Iowa soils is relatively uniform with montmorillonite. 

illite. and kaolinite comprising 60. 30. and 10 percent, respectively (Russel and Haddock 

1940). From Equation 1 it can be shown that Iowa soils with a plasticity index of 35 or 

higher contain approximately 40 percent and higher clay content, which is an indication of 

high to ver\' high swell potential. A plasticity index of 10 or less indicates clay content of 

approximately 15 percent or less and is a boundary value for low swell potential. For the 

EPC system critical liquid limit values of 50 and plasticity index values of 10 and 35 were 

selected to develop the boundaries for the low to medium to high plasticity clays. 

S//n' Soils 

Preventing frost susceptible soils from being incorporated into the upper portion of 

the pavement subgrade is also a major component of the EPC system. Field pavement 

performance obser\'ations have shown that frost damage occurs if all of the following 
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conditions are present: (I) a supply of water. (2) freezing temperatures penetrating the 

ground, and (3) frost-susceptible soils. By eliminating one of these conditions frost damage 

is prevented. The most practical approach to prevent frost heave is to identify and eliminate 

frost susceptible soils from the subgrade. Frost penetration in Iowa ranges from 1.0 m in the 

south to 1.5 m in the north (Bowles 1985). Based on hydraulic principles such as soil 

permeability and capillary action, low plasticit\' clay and silts and fine sands are the most 

frost susceptible soils; whereas, gravels and heavy clays are the least susceptible. Table 3 

summarizes several correlations between frost susceptibility and plasticity index, fines 

content and clay content. 

To better define frost susceptible soils the Department of the Army (1983) developed 

empirical guidelines. From this investigation A-2-4. A-4. A-6 (ML. ML-OL. CL. CL-ML. 

and SM-SC) soils were found to have high to very high frost susceptibility with the silt 

fraction being the key variable. Identifying these silts and low to medium plasticity clays can 

eliminate the majority of frost susceptible soils from being incorporated into the subgrade. 

For Iowa soils the silt-size fraction can be estimated as 

% Silt-size fraction (by weight from 2 to 75nm.) = 0.984 (F jno)  -  0.745 (PI) - 14.759 

where Fjon = percent passing the No. 200 sieve. Figure 4 shows a strong correlation (Adj. R" 

= 0.92. n =12.045) between the measured silt content and the estimated silt content from 

Equation 2. Well-graded silty or fine sandy Iowa soils with a plasticity index of 10 or less 

and fines content of 70 percent or greater are estimated to contain approximately 45 percent 
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silt content. In Iowa soils with 45 percent silt fraction and higher are considered highly frost 

susceptible and should not be placed directly under the pavement structure. 

Empirical Performance Classification (EPC) System 

Table 4 and Figure 5 combine to form the EPC system, which can be used to 

determine the final soil classification for Iowa criteria. The EPC chart shown on Figure 5 

was developed using the foregoing data to establish Atterberg limit boundaries for low to 

high plasticity clays. The boundary between clayey and silty soils is defined by the empirical 

Casagrande (1932) A-line. whereby clayey soils plot above the A-line and silty soils plot 

below the A-line. These empirical relationships form the basis for the EPC chart. The group 

inde.x empirical formula (AASHTO 145-91) was used to establish the Fineness Designation 

Numbers (FDN) shown in the Iowa EPC criteria in Table 4. which is a means of weighting 

the effects of plasticity index, liquid limit, and percent passing the No. 200 sieve. As the 

group index decreases, the supporting capacit>' of the subgrade soil reportedly decreases. In 

the authors" opinion the group index also appears to be proportional to swell potential and 

inversely proportional to frost susceptibility. A group index of 15 indicates the transition 

from a •"select" to a "suitable" soil for medium plasticity clays and a group index of 30 

indicates the transition from a "suitable" to an "unsuitable" soil for high plasticity clays. 

The information required for the EPC system includes the fines content (percent 

passing the No. 200 sieve) and plasticity characteristics of the minus No. 40 (425-fim) sieve 

material. The EPC chart (Fig. 5) is divided into preliminary soil groups, which are then used 

to determine the final soil classification as "select", "suitable", or "unsuitable". 
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"Select" soils are those placed directly under the pavement structure (0 to 0.6 m) to 

provide adequate volumetric stability, low frost potential, and good bearing capacity. 

"Suitable" soils underlie (0.6 to 1.5 m) the "select" soils and are usually in the zone of 

seasonal freeze/thaw and wetting and drying cycles. "Unsuitable" soils are commonly 

characterized as highly plastic clays or highly compressible, frost prone silts and are buried 

beneath the suitable soils (1.0 to 1.5 m below top of subgrade). By burying them, overburden 

stresses help to confine the soil and eliminate them from the zone of seasonal moisture 

change and frost penetration. 

Sev eral examples and comparison classifications between the EPC system and 

conventional soil index properties are shown in Table 5. The examples show how the 

required soil information (liquid limit, plasticity index, and percent passing the No. 200 

sieve) can be reported. 

EPC Procedure 

Initially a soil sample is obtained from the borrow pit during excavation or the grade 

during construction. Then index properties consisting of the liquid limit, plasticity index, and 

fines content (percent passing the No. 200 sieve) are determined. Once laboratory' testing is 

complete the EPC system (Table 4 and Figure 5) is used to classify the soil as "select", 

"suitable", or "unsuitable" as described in the following steps: 

1. Plot the liquid limit and plasticity index on the EPC chart (Fig. 5). 

2. Determine in which designated preliminary' soil group the soil plots, for example LL = 56 

and PI = 37 plots in the region of high plasticity clay. 
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3. Determine if the fines content. F200. is less than or greater than the Fineness Designation 

Number (FDN). 

4. Classify soil "select", "suitable", or "unsuitable" based on guidelines shown in Table 4. 

Classification Criteria 

In the following the liquid limit, plasticity index, and fines content for each 

preliminar\- soil group and the final soil classification are given for record. This information 

could be used to write a computer program for automation of the EPC system. 

High Plasticity Clays - The soil is high plasticity clay if on Figure 5. the position of 

the plasticity index versus liquid limit plot falls on or above the A-line and the liquid limit is 

greater than 50. 

1. Classify the soil as "suitable" if the percent by dry weight of the test specimen 

passing the No. 200 (TS-^im) sieve is less than the Fineness Designation Number. 

2. Classify the soil as "unsuitable" if the percent by dry weight of the test specimen 

passes the No. 200 (75-(j,m) sieve is more than the Fineness Designation Number. 

Dispose of the material at least 1.5 m below top of subgrade. 

Medium Plasticity Clays - The soil is medium plasticity clay if the position of the 

plasticity index versus liquid limit plot falls on or above the A-line on Figure 5. and the 
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liquid limit falls on or below 50, and the PI > (28 - 0.38LL) when the liquid limit is from 28 

to 38. 

1. Classify the soil as "select" if the percent by dry weight of the test specimen 

passing the No. 200 (75-fim) sieve is less than the Fineness Designation Number. 

2. Classify the soil as "suitable" if the percent by dr\' weight of the test specimen 

passing the No. 200 (75-|im) sieve is more than the Fineness Designation 

Number. 

Low/Medium Plasticity Clays - The soil is low to medium plasticity clay if the 

position of the plasticity index versus liquid limit plot falls on or above the A-line. and the 

plasticity index falls on or above 10. and PI < (28 - 0.38LL) when the liquid limit is from 28 

to 38. 

1. ClassifV- the soil as "select" if the percent by dry weight of the test specimen 

passing the No. 200 (75-fim) sieve is less than 60%. 

2. Classify- the soil as "suitable" if the percent by dry weight of the test specimen 

passing the No. 200 (75-jj.m) sieve is from 60% to 70%. 

3. Classif>' the soil as "unsuitable" if the percent by dry weight of the test specimen 

passing the No. 200 (75-fim) sieve is more than 70%. Dispose of the material at 

least 1.0 m below top of subgrade. 
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Low Plasticity Clays - The soil is low plasticity clay if the position of the plasticity 

index versus liquid limit plot falls on or above the A-line. and the plasticity index falls below 

10. 

1. Classify the soil as "select" if the percent by dry weight of the test specimen 

passing the No. 200 (75-|j,m) sieve is less than or equal to 45% and the percent by 

dry weight of the test specimen passing the No. 40 (425-^m) sieve is less than or 

equal to 70%. 

2. Classify the soil as "suitable" if the percent by dry weight of the test specimen 

passing the No. 200 (75-|im) sieve is from 46% to 70%. 

3. Classify the soil as "unsuitable" if the percent by dry weight of the test specimen 

passing the No. 200 (75-fim) sieve is more than 70%. Dispose of the material at 

least 1.0 m below top of subgrade. 

Sills of Medium Compressibility - The soil is a silt of medium compressibility if the 

position of the plasticity index versus liquid limit plot falls below the A-line. and the liquid 

limit is less than or equal to 50. Classify the soil as unsuitable. Dispose of the material at 

least 1.5 m below top of subgrade. 

Highly Compressible Silts and High Plasticity Organic Clays - The soil is a highly 

compressible silt and high plasticity organic clay if the position of the plasticity index versus 

liquid limit plot falls below the A-line, and the liquid limit is greater than 50. 
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1. Classify the soil as "unsuitable" if the percent carbon by dry weight of the test 

specimen is equal or more than 3.0%. Use as slope dressing only. 

2. Classify the soil as "unsuitable" if the percent carbon by dr\' weight of the test 

specimen is less than 3.0%. Dispose of the material within alternating layers of 

suitable material at least 1.5 m below top of subgrade. 

Conclusions 

A new soil classification system was developed from empirical data correlations, 

which address anticipated field soil performance relative to swell potential and frost 

susceptibility. The Empirical Performance (EPC) system requires simple testing of Atterberg 

limits and determination of the amount of fines (percent passing the No. 200 sieve) in the soil 

for classification. These tests can be rapidly conducted in a field laboratory. The EPS 

SN'siem was developed to be used during soils design and construction phases and to provide 

a communication link between design and construction personnel on highway projects in 

order to improve embankment quality. This is expected to result in reduced long-term 

pavement maintenance costs. 

Recently, the EPC system was used in Iowa on a highway pilot project to test 

feasibility. Research shows that the performance classification method is an effective tool to 

use when soils are being mi.xed during borrow excavation and construction processes or 

when soils are not identified on borrow pit boring logs. In order to perform the testing 

required on the pilot project, a field lab was equipped with an Atterberg limit test set. a 

microwave and scale, and No. 40 and 200 sieves. In addition, a water tank was furnished for 

sieve washing. Total testing time to perform one complete classification averaged one hour 
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for an efficient Iowa DOT technician. The EPC system is currently under review by the 

Iowa DOT for adoption and inclusion in statewide design and construction specifications. 
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TABLE \—Current Iowa DOT specification for cohesive soil classification into "select 
"suitable and "unsuitable " categories 

Select soils Suitable soils Unsuitable soils 
(must meet all conditions - (must meet all conditions - (Requirements for use at different depths) 
t> pically used in top 0.6 m used throughout fill except 
of subgrade for top 0.6 m of subgrade 

• 45 percent or less silt size • 1500 kg/m' or greater 
fraction (0.075-0.002 mm) density (AASHTO T 99 

Proctor density ) 

• Slope dressing only 
peat or muck 
soil with plastic limit > 35 
A-7-5 or A-5 having density < 
1350 ka/m' 

• 1750 kg/m^ or greater 
density' (AASHTO T99 
Proctor density ) 

• Group Index < 30 
(AASHTO M 145-90) 

• Disposal 1 m below top of subgrade 
All soils other than A-7-5 or .A-5 
having density < 1500 kg/m' 
All soils other than A-7-5 or A-5 
containing > 3.0% carbon 

• Plasticirv index > 10 

•A-6 or A-7-6 soils of 
glacial origin 

• Disposal I m below top of subgrade 
A-7-6 (30 Or greater) 
Residual clays overlying bedrock 
regardless of classification 

• Disposal 1.5 m below top of subgrade 
with alternate layers of suitable soils 

shale 
A-7-5 or A-5 soils having density 
from 1350 kg/m' to 1500 kg/m' 
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TABLE 2—Relationships betu'een swell potential and soil index properties 

Reference Index Criteria 

Potential 
for 

Expansion 

Seed et al. (1962) PI < 15 
10 < PI <30 
20 < PI <55 
PI >40 

Low 
Medium 
High 
Very High 

Department of the Army (1983) LL<50 
50 < LL < 60 
LL>60 

PI<25 
25 < PI <35 
PI >35 

Low 
Medium 
High 

Krebs and Walker (1971) PI < 15 
15 < PI < 24 
25 < PI < 46 
PI >46 

Low 
Medium 
High 
Very High 

Holtz and Gibbs (1956) PI< 18 
15 < PI <28 
25 < PI <41 
PI >35 

Low 
Medium 
High 
Ver\' High 

Chen(1988) Floo JO 
30 < F200 < 60 
60 < Fiqo ^ 95 
F;oo > 35 

LL < 10 
40 < LL < 60 
3 0 < L L < 4 0  
L L > 6 0  

Low 
Medium 
High 
Very High 

Fenton (1995) C C < 2 5  
2 5  < C C < 3 5  
3 6 < C C < 4 5  
C C > 4 5  

Low 
Moderate 
High 
Ver\' High 

Note: LL = liquid limit; PI = plasticit\' index: F200 = percent passing 75 }j.m 
(No. 200) sieve; CC = clay content for Iowa soils (< 2 jam). 
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TABLE 2—Relationships between frost susceptibility and soil 
index properties 

Reference Index Criteria Comments 

Transport and Road 
Research Laboratory' 
(1970) 

P I < 2 0  

P I  > 2 0  

Frost 
Susceptible 

Non-Frost 
Susceptible 

Beskow (1935) F200 ^ 70 
Frost-heaving 
glacial soils 

Glossop and Skempton 
(1945) Silt size < 30 

Non-frost 
heaving well-
sorted soil 

Hansbo (1975) CC 15-25% 

CC > 40% and 
Fines > 16% 

Strong frost 
susceptibility 
Moderate frost 
susceptibility' 

Note: PI = plasticity index; F;oo = percent passing 75 |a.m (No. 200) 
sieve; CC = clay content (< 2 |im). fines = 0.06mm. 
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TABLE A—Iowa EPC criteria for cohesive soils. 

Preliminary- Soil 
Final Classification and Criteria Unsuitable Disposal 

Requirements 
Group 

Select Suitable Unsuitable 
(placement below top 
of subgrade) 

Low plasticity F;oo S 45 and 46 £ F200 < F200 > 70 1.0 m 
clays Fao < 70 70 

Lo%v'Medium F200 60 60 ^ F200 — F200 ^ 70 I.O m 
plasticity clays 70 

Medium plasticity F:oo < FDN F200 > FDN 
clays 

High plasticity F200 < FDN F200 > FDN 1.5 m 
clays 

Silts of medium All soils in 1.5 m 
compressibility this region 

Highly All soil in • Dispose within 
compressible silts this region altematina lavers of 
and high plasticity suitable material at least 
organic clays 1.5 m 

• Slope dressing only if 
carbon content > 3.0% 

NOTE: F;oo = Percent passing 75 (im (No. 200) sieve; Fjo = percent passing 425 nm Wo. 40) sieve; 
FDN = Fineness Designation Numbers from Fig. 5. 
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TABl^E S-Comparisons of Empirical Performance Classification with the AASUTO ami Unified classification systems 

NO. LL PI 

Percent 

passing 

No. 40 

sieve 

Percent 

passing 
No. 200 

sieve 

AAsnro 
Classification 

System 

(Group Index) 

Unified 

Classification 

System 

Group Symbol 

Preliminary 

Descriptive Regions for 

Cohesive Soils from Fig. 3 

Empirical 

Performance 

Classification 

1 28 4 — 39 A-4{1) ML 
Inorganic Silts of Medium 

Compressibility 
Unsuitable 

2 22 9 68 44 A-4(0) CL-ML Low Plasticity Clays Select 

3 19 7 — 63 A-4(0) CL-ML Low Plasticity Clays Suitable 

4 33 II — 62 A-6(7) CL Low/Medium Plasticity Clays Suitable 

5 35 21 — 61 A-6(I0) CL Medium Plasticity Clays Select 

6 49 27 — 95 A-7-6(28) CL Medium Plasticity Clays Suitable 

7 57 41 — 74 A-7-6(29) cn High Plasticity Clays Suitable 

8 63 36 — 84 A-7-6(36) CH High Plaslicily Clays Unsuitable 

9 63 45 — 94 A-7-5(33) MH High Plasticity Clays Unsuitable 

10 65 41 — 71 A-7-6(29) cn High Plasticity Clays Suitable 

II 76 37 — 91 A-7-5(42) Mil 
Highly compressible inorganic 

sihs and high plasticity clays 
Unsuitable 

12 97 71 — 95 A-7-6(81) CH High Plasticity Clays Unsuitable 

Note: I'crccnt passing the No. 40 sieve is only required for soils that plot in the Low plasticity clay region as indicated on 

Fig. 5 and have less than 46 percent passing the No. 200 sieve 
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FIG 3 - Relationship between clay content and plasticity index 
for Iowa soils 
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CHAPTER V. GENERAL CONCLUSIONS 

The major conclusions derived from this research are summarized separatel>' for each paper 

as follows: 

Long Term Strength and Durability of Hydrated Fly Ash Road Bases 

• The strength properties and environmental benefits of using reclaimed HFA make it a 

desirable road base material from an engineering, environmental, and economic 

perspective. In comparison with full depth portland cement concrete (PCC) or 

asphaltic cement concrete (ACC) in combination with aggregate base materials. 

pa\ ement costs can be reduced by up to 50 percent by using a thin asphaltic concrete 

surface course in combination with the described calcium activated HFA base 

material. 

• HFA material is unique in that if water is available for hydration, long-term 

pozzolanic reactions increase strength with time. Long-term strength gain was 

evidenced in the laboratorv' and from extracted core samples. 

• Despite delamination occurring in the AFBC activated HFA test section, it has been 

performing ver>' well under heavy traffic loads through 5 years. However, in the 

authors" opinion activators containing high levels of sulfates should be avoided in the 

future. 

• Future materials analysis (x-ray and thermal analysis) of HFA bases should focus on 

long-term reaction product formation with emphasis on ettringite and thaumasite 
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formation and on the possibility that because the HFA aggregate is rich in silica that 

alkali-silica gel is forming and causing the observed delamination. 

Microstructure of Composite Material from High-Lime Fly Ash and RPET 

• An innovative composite material has been developed from high-lime fly ash and 

recycled polyethylene terephthalate (PET), which can potentially be used as a 

construction building material. Primarv- uses for this material are anticipated to 

include construction panels, masonry units and polymer aggregate concrete materials. 

• Municipalities, landfill companies, and power generating stations will benefit from 

production of this composite material because of reduced landfill space requirements. 

In addition, consumers and manufacturers will benefit from an expanded product line. 

Therefore, it is concluded that this will be a favorable technolog>' both 

environmentally and economically. 

• Future testing should include evaluation for specific building material applications. 

Currently, research is underway to evaluate the resistance of the composite material 

to sulfuric acid attack and ultraviolet light degradation. 

Simplified and Rapid Soil Performance Classification System 

• The EPC system is a new soil classification system for grouping soils together by 

predicting soil performance based on swell potential and frost susceptibilit>' 
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relationships. These relationships are derived from published literature and empirical 

correlations developed for clay and silt content for Iowa soils. 

• This system is intended to increase field soil identification and to better link design 

with construction activities, which will reduce long-term pavement maintenance 

costs. 

• In the ftiture a full-scale evaluation of the EPC system is planned on an Iowa 

Department of Transportation embankment project. This pilot project will be used to 

make adjustments to the EPC system if needed. 
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